1
0
Fork 0

Simplify projet structure

This commit is contained in:
Florian RICHER 2022-06-14 22:39:48 +02:00
parent 44e027f76f
commit 0c1dabb99a
16 changed files with 279 additions and 1860 deletions

74
src/engine.rs Normal file
View file

@ -0,0 +1,74 @@
use winit::{
event::{ElementState, Event, KeyboardInput, VirtualKeyCode, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
pub struct Engine {
title: &'static str,
}
impl Engine {
pub fn new(title: &'static str) -> Engine {
Engine { title }
}
pub async fn run(self) {
let event_loop = EventLoop::new();
let window = WindowBuilder::new()
.with_title(self.title)
.build(&event_loop)
.unwrap();
let mut state = crate::State::new(&window).await;
event_loop.run(
move |event: Event<()>, _, control_flow: &mut ControlFlow| match event {
Event::WindowEvent {
ref event,
window_id,
} if window_id == window.id() => {
if !state.input(&event) {
match event {
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::KeyboardInput { input, .. } => match input {
KeyboardInput {
state: ElementState::Pressed,
virtual_keycode: Some(VirtualKeyCode::Escape),
..
} => *control_flow = ControlFlow::Exit,
_ => {}
},
WindowEvent::Resized(physical_size) => {
state.resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
// new_inner_size is &&mut so we have to dereference it twice
state.resize(**new_inner_size);
}
_ => {}
}
}
}
Event::RedrawRequested(window_id) if window_id == window.id() => {
state.update();
match state.render() {
Ok(_) => {}
// Reconfigure the surface if lost
Err(wgpu::SurfaceError::Lost) => state.resize(state.size),
// The system is out of memory, we should probably quit
Err(wgpu::SurfaceError::OutOfMemory) => *control_flow = ControlFlow::Exit,
// All other errors (Outdated, Timeout) should be resolved by the next frame
Err(e) => eprintln!("{:?}", e),
}
}
Event::MainEventsCleared => {
// RedrawRequested will only trigger once, unless we manually
// request it.
window.request_redraw();
}
_ => {}
},
);
}
}

BIN
src/happy-tree.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View file

@ -1,3 +1,11 @@
mod engine;
pub use engine::Engine;
mod state;
pub use state::State;
pub mod render;
use simplelog::{TermLogger, LevelFilter, Config, TerminalMode, ColorChoice};
fn main() {
@ -5,6 +13,6 @@ fn main() {
println!("Failed to start logger : {}", err);
}
let engine = engine_core::Engine::new("Test 123");
let engine = Engine::new("Test 123");
pollster::block_on(engine.run());
}

BIN
src/pikachu.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

139
src/render/camera.rs Normal file
View file

@ -0,0 +1,139 @@
use winit::event::{WindowEvent, KeyboardInput, ElementState, VirtualKeyCode};
#[rustfmt::skip]
pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4<f32> = cgmath::Matrix4::new(
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.0, 0.0, 0.5, 1.0,
);
pub struct Camera {
pub eye: cgmath::Point3<f32>,
pub target: cgmath::Point3<f32>,
pub up: cgmath::Vector3<f32>,
pub aspect: f32,
pub fovy: f32,
pub znear: f32,
pub zfar: f32,
}
impl Camera {
fn build_view_projection_matrix(&self) -> cgmath::Matrix4<f32> {
let view = cgmath::Matrix4::look_at_rh(self.eye, self.target, self.up);
let proj = cgmath::perspective(cgmath::Deg(self.fovy), self.aspect, self.znear, self.zfar);
return OPENGL_TO_WGPU_MATRIX * proj * view;
}
}
// We need this for Rust to store our data correctly for the shaders
#[repr(C)]
// This is so we can store this in a buffer
#[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct CameraUniform {
// We can't use cgmath with bytemuck directly so we'll have
// to convert the Matrix4 into a 4x4 f32 array
view_proj: [[f32; 4]; 4],
}
impl CameraUniform {
pub fn new() -> Self {
use cgmath::SquareMatrix;
Self {
view_proj: cgmath::Matrix4::identity().into(),
}
}
pub fn update_view_proj(&mut self, camera: &Camera) {
self.view_proj = camera.build_view_projection_matrix().into();
}
}
pub struct CameraController {
speed: f32,
is_forward_pressed: bool,
is_backward_pressed: bool,
is_left_pressed: bool,
is_right_pressed: bool,
}
impl CameraController {
pub fn new(speed: f32) -> Self {
Self {
speed,
is_forward_pressed: false,
is_backward_pressed: false,
is_left_pressed: false,
is_right_pressed: false,
}
}
pub fn process_events(&mut self, event: &WindowEvent) -> bool {
match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
state,
virtual_keycode: Some(keycode),
..
},
..
} => {
let is_pressed = *state == ElementState::Pressed;
match keycode {
VirtualKeyCode::W | VirtualKeyCode::Up => {
self.is_forward_pressed = is_pressed;
true
}
VirtualKeyCode::A | VirtualKeyCode::Left => {
self.is_left_pressed = is_pressed;
true
}
VirtualKeyCode::S | VirtualKeyCode::Down => {
self.is_backward_pressed = is_pressed;
true
}
VirtualKeyCode::D | VirtualKeyCode::Right => {
self.is_right_pressed = is_pressed;
true
}
_ => false,
}
}
_ => false,
}
}
pub fn update_camera(&self, camera: &mut Camera) {
use cgmath::InnerSpace;
let forward = camera.target - camera.eye;
let forward_norm = forward.normalize();
let forward_mag = forward.magnitude();
// Prevents glitching when camera gets too close to the
// center of the scene.
if self.is_forward_pressed && forward_mag > self.speed {
camera.eye += forward_norm * self.speed;
}
if self.is_backward_pressed {
camera.eye -= forward_norm * self.speed;
}
let right = forward_norm.cross(camera.up);
// Redo radius calc in case the fowrard/backward is pressed.
let forward = camera.target - camera.eye;
let forward_mag = forward.magnitude();
if self.is_right_pressed {
// Rescale the distance between the target and eye so
// that it doesn't change. The eye therefore still
// lies on the circle made by the target and eye.
camera.eye = camera.target - (forward + right * self.speed).normalize() * forward_mag;
}
if self.is_left_pressed {
camera.eye = camera.target - (forward - right * self.speed).normalize() * forward_mag;
}
}
}

60
src/render/instance.rs Normal file
View file

@ -0,0 +1,60 @@
pub struct Instance {
pub position: cgmath::Vector3<f32>,
pub rotation: cgmath::Quaternion<f32>,
}
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct InstanceRaw {
model: [[f32; 4]; 4],
}
impl Instance {
pub fn to_raw(&self) -> InstanceRaw {
InstanceRaw {
model: (cgmath::Matrix4::from_translation(self.position)
* cgmath::Matrix4::from(self.rotation))
.into(),
}
}
}
impl InstanceRaw {
pub fn desc<'a>() -> wgpu::VertexBufferLayout<'a> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<InstanceRaw>() as wgpu::BufferAddress,
// We need to switch from using a step mode of Vertex to Instance
// This means that our shaders will only change to use the next
// instance when the shader starts processing a new instance
step_mode: wgpu::VertexStepMode::Instance,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
// While our vertex shader only uses locations 0, and 1 now, in later tutorials we'll
// be using 2, 3, and 4, for Vertex. We'll start at slot 5 not conflict with them later
shader_location: 5,
format: wgpu::VertexFormat::Float32x4,
},
// A mat4 takes up 4 vertex slots as it is technically 4 vec4s. We need to define a slot
// for each vec4. We'll have to reassemble the mat4 in
// the shader.
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 4]>() as wgpu::BufferAddress,
shader_location: 6,
format: wgpu::VertexFormat::Float32x4,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress,
shader_location: 7,
format: wgpu::VertexFormat::Float32x4,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 12]>() as wgpu::BufferAddress,
shader_location: 8,
format: wgpu::VertexFormat::Float32x4,
},
],
}
}
}

15
src/render/mod.rs Normal file
View file

@ -0,0 +1,15 @@
mod vertex;
pub use vertex::Vertex;
mod camera;
pub use camera::{
Camera, CameraUniform, CameraController
};
mod texture;
pub use texture::Texture;
mod instance;
pub use instance::{
Instance, InstanceRaw
};

116
src/render/texture.rs Normal file
View file

@ -0,0 +1,116 @@
use anyhow::*;
use image::GenericImageView;
pub struct Texture {
pub texture: wgpu::Texture,
pub view: wgpu::TextureView,
pub sampler: wgpu::Sampler,
}
impl Texture {
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
pub fn from_bytes(
device: &wgpu::Device,
queue: &wgpu::Queue,
bytes: &[u8],
label: &str,
) -> Result<Self> {
let img = image::load_from_memory(bytes)?;
Self::from_image(device, queue, &img, Some(label))
}
pub fn from_image(
device: &wgpu::Device,
queue: &wgpu::Queue,
img: &image::DynamicImage,
label: Option<&str>,
) -> Result<Self> {
let rgba = img.to_rgba8();
let dimensions = img.dimensions();
let size = wgpu::Extent3d {
width: dimensions.0,
height: dimensions.1,
depth_or_array_layers: 1,
};
let texture = device.create_texture(&wgpu::TextureDescriptor {
label,
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8UnormSrgb,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
});
queue.write_texture(
wgpu::ImageCopyTexture {
aspect: wgpu::TextureAspect::All,
texture: &texture,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
},
&rgba,
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: std::num::NonZeroU32::new(4 * dimensions.0),
rows_per_image: std::num::NonZeroU32::new(dimensions.1),
},
size,
);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
..Default::default()
});
Ok(Self {
texture,
view,
sampler,
})
}
pub fn create_depth_texture(device: &wgpu::Device, config: &wgpu::SurfaceConfiguration, label: &str) -> Self {
let size = wgpu::Extent3d {
width: config.width,
height: config.height,
depth_or_array_layers: 1,
};
let desc = wgpu::TextureDescriptor {
label: Some(label),
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT
| wgpu::TextureUsages::TEXTURE_BINDING,
};
let texture = device.create_texture(&desc);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
let sampler = device.create_sampler(
&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
compare: Some(wgpu::CompareFunction::LessEqual),
lod_min_clamp: -100.0,
lod_max_clamp: 100.0,
..Default::default()
}
);
Self { texture, view, sampler }
}
}

41
src/render/vertex.rs Normal file
View file

@ -0,0 +1,41 @@
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
pub struct Vertex {
pub position: [f32; 3],
pub tex_coords: [f32; 2],
}
impl Vertex {
const ATTRIBS: [wgpu::VertexAttribute; 2] =
wgpu::vertex_attr_array![0 => Float32x3, 1 => Float32x2];
pub fn desc<'a>() -> wgpu::VertexBufferLayout<'a> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<Self>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &Self::ATTRIBS,
}
}
// pub fn desc<'a>() -> wgpu::VertexBufferLayout<'a> {
// wgpu::VertexBufferLayout {
// array_stride: std::mem::size_of::<Vertex>() as wgpu::BufferAddress,
// step_mode: wgpu::VertexStepMode::Vertex,
// attributes: &[
// wgpu::VertexAttribute {
// offset: 0,
// shader_location: 0,
// format: wgpu::VertexFormat::Float32x3,
// },
// wgpu::VertexAttribute {
// offset: std::mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
// shader_location: 1,
// format: wgpu::VertexFormat::Float32x2,
// }
// ]
// }
// }
}

49
src/shader.wgsl Normal file
View file

@ -0,0 +1,49 @@
struct InstanceInput {
[[location(5)]] model_matrix_0: vec4<f32>;
[[location(6)]] model_matrix_1: vec4<f32>;
[[location(7)]] model_matrix_2: vec4<f32>;
[[location(8)]] model_matrix_3: vec4<f32>;
};
struct CameraUniform {
view_proj: mat4x4<f32>;
};
[[group(1), binding(0)]]
var<uniform> camera: CameraUniform;
struct VertexInput {
[[location(0)]] position: vec3<f32>;
[[location(1)]] tex_coords: vec2<f32>;
};
struct VertexOutput {
[[builtin(position)]] clip_position: vec4<f32>;
[[location(0)]] tex_coords: vec2<f32>;
};
[[stage(vertex)]]
fn vs_main(
model: VertexInput,
instance: InstanceInput,
) -> VertexOutput {
let model_matrix = mat4x4<f32>(
instance.model_matrix_0,
instance.model_matrix_1,
instance.model_matrix_2,
instance.model_matrix_3,
);
var out: VertexOutput;
out.tex_coords = model.tex_coords;
out.clip_position = camera.view_proj * model_matrix * vec4<f32>(model.position, 1.0);
return out;
}
[[group(0), binding(0)]]
var t_diffuse: texture_2d<f32>;
[[group(0), binding(1)]]
var s_diffuse: sampler;
[[stage(fragment)]]
fn fs_main(in: VertexOutput) -> [[location(0)]] vec4<f32> {
return textureSample(t_diffuse, s_diffuse, in.tex_coords);
}

507
src/state.rs Normal file
View file

@ -0,0 +1,507 @@
use super::render::{
Vertex, Camera, CameraUniform, CameraController, Texture, Instance, InstanceRaw
};
use cgmath::prelude::*;
use wgpu::util::DeviceExt;
use winit::{
event::{ElementState, KeyboardInput, VirtualKeyCode, WindowEvent},
window::Window,
};
const VERTICES: &[Vertex] = &[
Vertex {
position: [-0.0868241, 0.49240386, 0.0],
tex_coords: [0.4131759, 0.00759614],
}, // A
Vertex {
position: [-0.49513406, 0.06958647, 0.0],
tex_coords: [0.0048659444, 0.43041354],
}, // B
Vertex {
position: [-0.21918549, -0.44939706, 0.0],
tex_coords: [0.28081453, 0.949397],
}, // C
Vertex {
position: [0.35966998, -0.3473291, 0.0],
tex_coords: [0.85967, 0.84732914],
}, // D
Vertex {
position: [0.44147372, 0.2347359, 0.0],
tex_coords: [0.9414737, 0.2652641],
}, // E
];
const INDICES: &[u16] = &[0, 1, 4, 1, 2, 4, 2, 3, 4];
const NUM_INSTANCES_PER_ROW: u32 = 10;
const INSTANCE_DISPLACEMENT: cgmath::Vector3<f32> = cgmath::Vector3::new(
NUM_INSTANCES_PER_ROW as f32 * 0.5,
0.0,
NUM_INSTANCES_PER_ROW as f32 * 0.5,
);
const FRAME_TIME: f32 = 1.0 / 60.0;
const ROTATION_SPEED: f32 = std::f32::consts::PI * FRAME_TIME * 0.5;
pub struct State {
pub surface: wgpu::Surface,
pub device: wgpu::Device,
pub queue: wgpu::Queue,
pub config: wgpu::SurfaceConfiguration,
pub size: winit::dpi::PhysicalSize<u32>,
render_pipeline: wgpu::RenderPipeline,
vertex_buffer: wgpu::Buffer,
camera: Camera,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
camera_controller: CameraController,
instances: Vec<Instance>,
instance_buffer: wgpu::Buffer,
// num_vertices: u32,
index_buffer: wgpu::Buffer,
num_indices: u32,
diffuse_bind_group_pikachu: wgpu::BindGroup,
#[allow(dead_code)]
diffuse_texture_pikachu: Texture,
diffuse_bind_group: wgpu::BindGroup,
#[allow(dead_code)]
diffuse_texture: Texture,
depth_texture: Texture,
toggle: bool,
}
impl State {
// Creating some of the wgpu types requires async code
pub async fn new(window: &Window) -> Self {
let size = window.inner_size();
// The instance is a handle to our GPU
// Backends::all => Vulkan + Metal + DX12 + Browser WebGPU
let instance = wgpu::Instance::new(wgpu::Backends::all());
let surface = unsafe { instance.create_surface(window) };
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
// let adapter = instance
// .enumerate_adapters(wgpu::Backends::all())
// .filter(|adapter| {
// // Check if this adapter supports our surface
// surface.get_preferred_format(&adapter).is_some()
// })
// .next()
// .unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
features: wgpu::Features::empty(),
// WebGL doesn't support all of wgpu's features, so if
// we're building for the web we'll have to disable some.
limits: if cfg!(target_arch = "wasm32") {
wgpu::Limits::downlevel_webgl2_defaults()
} else {
wgpu::Limits::default()
},
label: None,
},
None, // Trace path
)
.await
.unwrap();
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface.get_preferred_format(&adapter).unwrap(),
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
surface.configure(&device, &config);
// Binding des textures
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let diffuse_bytes = include_bytes!("happy-tree.png");
let diffuse_texture =
Texture::from_bytes(&device, &queue, diffuse_bytes, "happy-tree.png")
.unwrap();
let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
],
label: Some("diffuse_bind_group"),
});
let diffuse_bytes_pikachu = include_bytes!("pikachu.png");
let diffuse_texture_pikachu = Texture::from_bytes(
&device,
&queue,
diffuse_bytes_pikachu,
"pikachu.png",
)
.unwrap();
let diffuse_bind_group_pikachu = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture_pikachu.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture_pikachu.sampler),
},
],
label: Some("diffuse_bind_group"),
});
// FIN Binding des textures
let shader = device.create_shader_module(&wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let camera = Camera {
// position the camera one unit up and 2 units back
// +z is out of the screen
eye: (0.0, 1.0, 2.0).into(),
// have it look at the origin
target: (0.0, 0.0, 0.0).into(),
// which way is "up"
up: cgmath::Vector3::unit_y(),
aspect: config.width as f32 / config.height as f32,
fovy: 45.0,
znear: 0.1,
zfar: 100.0,
};
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("camera_bind_group_layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("camera_bind_group"),
});
let camera_controller = CameraController::new(0.2);
let instances = (0..NUM_INSTANCES_PER_ROW)
.flat_map(|z| {
(0..NUM_INSTANCES_PER_ROW).map(move |x| {
let position = cgmath::Vector3 {
x: x as f32,
y: 0.0,
z: z as f32,
} - INSTANCE_DISPLACEMENT;
let rotation = if position.is_zero() {
// this is needed so an object at (0, 0, 0) won't get scaled to zero
// as Quaternions can effect scale if they're not created correctly
cgmath::Quaternion::from_axis_angle(
cgmath::Vector3::unit_z(),
cgmath::Deg(0.0),
)
} else {
cgmath::Quaternion::from_axis_angle(position.normalize(), cgmath::Deg(45.0))
};
Instance { position, rotation }
})
})
.collect::<Vec<_>>();
let instance_data = instances
.iter()
.map(Instance::to_raw)
.collect::<Vec<_>>();
let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Instance Buffer"),
contents: bytemuck::cast_slice(&instance_data),
usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
});
let depth_texture =
Texture::create_depth_texture(&device, &config, "depth_texture");
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[&texture_bind_group_layout, &camera_bind_group_layout],
push_constant_ranges: &[],
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc(), InstanceRaw::desc()],
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
}],
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
// Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE
polygon_mode: wgpu::PolygonMode::Fill,
// Requires Features::DEPTH_CLIP_CONTROL
unclipped_depth: false,
// Requires Features::CONSERVATIVE_RASTERIZATION
conservative: false,
},
depth_stencil: Some(wgpu::DepthStencilState {
format: Texture::DEPTH_FORMAT,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
});
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(VERTICES),
usage: wgpu::BufferUsages::VERTEX,
});
// let num_vertices = VERTICES.len() as u32;
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(INDICES),
usage: wgpu::BufferUsages::INDEX,
});
let num_indices = INDICES.len() as u32;
Self {
surface,
device,
queue,
config,
size,
render_pipeline,
vertex_buffer,
camera,
camera_uniform,
camera_buffer,
camera_bind_group,
camera_controller,
// num_vertices,
index_buffer,
num_indices,
diffuse_bind_group,
diffuse_texture,
diffuse_bind_group_pikachu,
diffuse_texture_pikachu,
instances,
instance_buffer,
toggle: false,
depth_texture,
}
}
pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
self.depth_texture = Texture::create_depth_texture(
&self.device,
&self.config,
"depth_texture",
);
}
pub fn input(&mut self, event: &WindowEvent) -> bool {
match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
state,
virtual_keycode: Some(keycode),
..
},
..
} => {
let is_pressed = *state == ElementState::Pressed;
match keycode {
VirtualKeyCode::Space => {
self.toggle = is_pressed;
true
}
_ => self.camera_controller.process_events(event),
}
}
_ => self.camera_controller.process_events(event),
}
}
pub fn update(&mut self) {
self.camera_controller.update_camera(&mut self.camera);
self.camera_uniform.update_view_proj(&self.camera);
self.queue.write_buffer(
&self.camera_buffer,
0,
bytemuck::cast_slice(&[self.camera_uniform]),
);
for instance in &mut self.instances {
let amount = cgmath::Quaternion::from_angle_y(cgmath::Rad(ROTATION_SPEED));
let current = instance.rotation;
instance.rotation = amount * current;
}
let instance_data = self
.instances
.iter()
.map(Instance::to_raw)
.collect::<Vec<_>>();
self.queue.write_buffer(
&self.instance_buffer,
0,
bytemuck::cast_slice(&instance_data),
);
}
pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[
// This is what [[location(0)]] in the fragment shader targets
wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: true,
},
},
],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.depth_texture.view,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: true,
}),
stencil_ops: None,
}),
});
render_pass.set_pipeline(&self.render_pipeline);
if self.toggle {
render_pass.set_bind_group(0, &self.diffuse_bind_group_pikachu, &[]);
} else {
render_pass.set_bind_group(0, &self.diffuse_bind_group, &[]);
}
render_pass.set_bind_group(1, &self.camera_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..));
render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
// render_pass.draw(0..self.num_vertices, 0..1);
render_pass.draw_indexed(0..self.num_indices, 0, 0..self.instances.len() as _);
}
// submit will accept anything that implements IntoIter
self.queue.submit(std::iter::once(encoder.finish()));
output.present();
Ok(())
}
}